Welcome to UK420

Register now to gain access to all of our features. Once registered and logged in, you will be able to contribute to this site by submitting your own content or replying to existing content. You'll be able to customize your profile, receive reputation points as a reward for submitting content, while also communicating with other members via your own private inbox, plus much more!

This message will be removed once you have signed in.


Sign in to follow this  
Followers 0
elmanito

Synergistic Effects of Essential Oils & Cannabinoids

22 posts in this topic

Sound interesting, thanks for that.

Defintely morning reading for me.

Bill

1 person likes this

Share this post


Link to post

thanks for posting this Elmanito - I'll pin this

2 people like this

Share this post


Link to post

Thankyou for sharing, I had read these before but its always good to refresh the memory.

I find this BOLD statement quite amazing.

Plant cannabinoids —21-carbon molecules found only in Cannabis— are odorless. It’s the terpenoids —components of the plant’s “essential oils”— that create the fragrance.

Terpenoids contain repeating units of a 5-carbon molecule called isoprene and are prevalent in smelly herbs such as mints and sage, citrus peel, some flowers, aromatic-barks and woods.

:yinyang:

SC

Share this post


Link to post

Hey Namkha, as always, thanks to you for these very valuable pieces of information. I have passed this on to some health professionals as I will continue to do. Who knows how many people this information might greatly help? Great thanks!

Share this post


Link to post

Cancer chemoprevention and therapy by monoterpenes.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1470060/

[follow link to download full .pdf of article]

Abstract

Monoterpenes are found in the essential oils of many plants including fruits, vegetables, and herbs. They prevent the carcinogenesis process at both the initiation and promotion/progression stages. In addition, monoterpenes are effective in treating early and advanced cancers. Monoterpenes such as limonene and perillyl alcohol have been shown to prevent mammary, liver, lung, and'other cancers. These compounds have also been used to treat a variety of rodent cancers, including breast and pancreatic carcinomas. In addition, in vitro data suggest that they may be effective in treating neuroblastomas and leukemias. Both limonene and perillyl alcohol are currently being evaluated in phase I clinical trials in advanced cancer patients. The monoterpenes have several cellular and molecular activities that could potentially underlie their positive therapeutic index. The monoterpenes inhibit the isoprenylation of small G proteins. Such inhibitions could alter signal transduction and result in altered gene expression. The results of a new gene expression screen-subtractive display-have identified or confirmed several up- or downregulated genes in regressing mammary carcinomas. For example, these regressing tumors overexpress the mannose 6-phosphate/IGF II receptor. The product of the gene both degrades the mammary tumor mitogen IGF II and activates the cytostatic factor TGF-beta. These and other alterations in the gene expression of mammary carcinomas lead to a G1 cell cycle block, followed by apoptosis, redifferentiation, and finally complete tumor regression in which tumor parenchyma is replaced by stromal elements. It is likely that monoterpenes prevent mammary cancer during their progression stage by mechanisms similar to those that occur during therapy. In contrast, prevention of mammary cancer by polycyclic hydrocarbons such as 7,12-dimethylbenz[a]anthracene occur by the induction of detoxifying phase II hepatic enzymes.

Edited by namkha
2 people like this

Share this post


Link to post

Those Pungent Smells Oozing Out of Marijuana Buds Are Actually Giving You Clues About What Their Effects Will Be Like

http://www.alternet.org/drugs/those-pungent-smells-oozing-out-marijuana-buds-are-actually-giving-you-clues-about-what-their?akid=9630.1084575.chDwSn&rd=1&src=newsletter737195&t=9&paging=off

Scientists are now formally acknowledging something that Cannabis consumers have long taken for granted: aroma is associated with effect.

October 30, 2012

Scientists are now formally acknowledging something that Cannabis consumers have long taken for granted: aroma is associated with effect.

Plant cannabinoids —21-carbon molecules found only in Cannabis— are odorless. It’s the terpenoids —components of the plant’s “essential oils”— that create the fragrance. Terpenoids contain repeating units of a 5-carbon molecule called isoprene and are prevalent in smelly herbs such as mints and sage, citrus peel, some flowers, aromatic barks and woods.

The aroma of a given plant depends on which terpenoids predominate. They tend to be volatile molecules that readily evaporate, and they’re very potent —all it takes is a few reaching the nose to announce their presence.

Evidence that “phytocannabinoid-terpenoid interactions” enhance the therapeutic effects of cannabis was presented by Ethan Russo, MD, at a conference in Israel in 2010 and published in the August 2011 British Journal of Pharmacology. Russo, a neurologist and ethnobotanist, is senior medical adviser at GW Pharmaceuticals.

Both terpenoids and cannabinoids are secreted inside the Cannabis plant’s glandular trichomes, and they have a parent compound in common (geranyl pyrophosphate). More than 200 terpenoids have been identified in Cannabis. The most common and most studied include limonene, myrcene, alpha-pinene, linalool, beta-caryophyllene, caryophyllene oxide, nerolidol and phytol. Anecdotal evidence suggests that pinene is alerting, limonene “sunshine-y,” and myrcene sedating.

The fact that most terpenoid compounds are common components of the human diet and “generally recognized as safe” by the Food and Drug Administration has made research possible, and scientists employed by flavor and fragrances manufacturers have investigated their properties over the years. But the terpenoids “remain understudied” in terms of therapeutic potential, according to Russo.

His paper mustered all the evidence —proof in some cases, hints in others— that cannabinoids and terpenoids can work in concert to abate symptoms of pain, inflammation, depression, anxiety, addiction, epilepsy, cancer, fungal and bacterial infections, including methicillin-resistant Staphylococcus aureus (MRSA, which kills more Americans nowadays than AIDS) and other illnesses.

Jeffrey Hergenrather, MD, president of the Society of Cannabis Clinicians, who heard Russo’s presentation in Israel, expects its publication to “generate great interest in terpenes among medical cannabis users as well as physicians.” The SCC recently began collecting data on patients’ responses to CBD-rich Cannabis. Future surveys will seek to document which other cannabinoids and which terpenoids are associated with which effects.

The “Entourage Effect”

The conference at which Russo presented his paper was held at Hebrew University, Jerusalem, where Raphael Mechoulam directs a lab, in honor of Mechoulam’s 80th birthday.

In 1999 Mechoulam co-authored a paper with Shimon Ben-Shabat suggesting that cannabinoids made in the body work by means of an “entourage effect.” They had found that the endocannabinoid 2-AG (2-arachidonoylglycerol), when administered with two related compounds, would bind more readily at the cannabinoid receptors and exert more pronounced behavioral effect on mice.

To pharmacologists who customarily designed experiments aimed at finding the active ingredient, this had heavy implications. Mechoulam spelled them out: “Biochemically active natural products, from either plant or animal origin, are in many instances accompanied by chemically related though biologically inactive constituents. Very seldom is the biological activity of the active constituent assayed together with inactive ‘entourage’ compounds. Investigations of the effect of the active component in the presence of its ‘entourage’ compounds may lead to results that differ from those observed with the active component only.”

In 2001 John McPartland and Russo published a paper in the Journal of Cannabis Therapeutics applying the “entourage” concept to the plant itself. “Good evidence shows that secondary compounds in cannabis may enhance the beneficial effects of THC... and reduce THC-induced anxiety, cholinergic deficits, and immunosuppresion,” they wrote. “Cannabis terpenoids and flavonoids may also increase cerebral blood flow, enhance cortical activity, kill respiratory pathogens, and provide anti-inflammatory activity.”

A decade later, Russo is substantiating the molecular-teamwork hypothesis and expanding on it. His BJP paper, “Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects,” contains 304 citations.

Although the paper takes the form of a review of the literature, Russo’s perspective is forward-looking and practical. The paper can be read as a strategic guide for breeding and/or blending Cannabis so as to maximize specific medical effects. Its structure is straightforward:

1. Russo cites studies documenting the beneficial effects of THC, CBD, CBC, THCV, CBDV, CBG and CBN (noting the adverse effects attributed to THC).

2. He cites studies documenting the beneficial effects of Limonene, α-Pinene, Myrcene, Linalool, β-Caryophyllene, Caryophyllene Oxide, Nerolidol, and Phytol.

3. He notes which cannabinoid effects would be augmented by which terpenoids, and which terpenoid effects would be augmented by which cannabinoids.

There is a huge body of information to convey, and Russo’s style is compressed —documented fact after documented fact after documented fact, with insights positioned fittingly. The slides he showed in Israel have been integrated into two full-page tables for the BJP paper, listing the relevant studies and the cannabinoid-terpenoid combinations likely to produce a desired effect. The paper is well worth reading. My summary and the disjointed highlights that follow cannot do justice to Russo’s carefully constructed thesis.

The Cannabinoids Formerly Known as Minor (CFKMs)

The extensive breeding program directed by GW Pharmaceuticals’ Etienne de Meijer has yielded plants rich in CBD, CBC, CBG, and THCV.

Cannabichromene (CBC) is produced early in the plant’s life cycle according to a paper published by de Meijer in 2009. Citing de Meijer’s co-worker David Potter, Russo notes that “An innovative technique employing cold water extraction of immature leaf matter from selectively bred cannabis chemotypes yields a high-CBC ‘enriched trichrome preparation.’”

Cannabigerolic acid (CBGA), the precursor of THC, CBD, and CBC in their acid forms, is usually found at low concentrations. “But recent breeding work has yielded cannabis chemotypes lacking in downstream enzymes that express 100% of their phytocannabinoid content as CBG,” according to Russo. (More details are provided on GW Pharmaceuticals’ very informative website.)

Tetrahydrocannabivarin (THCV) blocks the CB1 receptor at low doses, and activates it at high doses. GW Pharmaceuticals hopes that a THCV-rich extract will be an effective appetite suppressant and will counter the symptoms of metabolic syndrome.

THCV is present in cannabis chemotypes from southern Africa —from which plants that are “highly predominant” in THCV have been bred.

Terpene Factoids

Whereas plant cannabinoids are found nowhere else in nature, terpenoids are produced by countless plant species. Some 20,000 terpenoids have been identified by chemists; they constitute the largest group of plant chemicals. More than 200 have been found in cannabis.

“Essential oil composition is much more genetically than environmentally determined,” Russo states. Every compound the plant produces has or had an evolutionary purpose. The bitter 15-carbon terpenoids in the fan leaves repel grazing animals, while the predominantly monoterpene mix in the flowers is unappealing to insects —and, thanks to its stickiness, can also entrap them.

Alpha-pinene is the most common terpenoid in the plant world; limonene is second. Named for their strong presence in pine needles and lemons, respectively, they are monoterpenes, also prevalent in cannabis.

Terpenoids may account for only 1% of the weight when cannabis is tested but 10% of the weight within the trichome.

Monoterpenes evaporate more readily than the di- and sesquiterpenes during drying, storage, and production of extracts, which results in a relatively higher proportion of caryophyllene.

Beneficial Effects

How do terpenoids exert effects within the body? Citing the relevant studies, Russo explains that they are “lipophilic, interact with cell membranes, neuronal and muscle ion channels, neurotransmitter receptors, G-protein coupled (odorant) receptors, second messenger systems and enzymes.”

The beneficial effects are wide-ranging and, in many cases, well established. Limonene, for example, has been shown to decrease anxiety in mice via the serotonin receptors. “Compelling confirmatory evidence in humans,” Russo writes, was provided by a Japanese study of severely depressed hospital patients whose moods improved when exposed to citrus fragrance. (Nine of 12 were able to get off antidepressants.)

Limonene, inhaled, is an immunostimulant. In lab experiments it has killed breast cancer cells and acne bacteria. It is a potential treatment for gastro-esophageal reflux.

Alpha-pinene —as anyone who has walked into piney woods and breathed deeply can sense— is a bronchodilator. It also has anti-bacterial and antibiotic properties. α-Pinene inhibits the enzyme that breaks down acetylcholine, a neurotransmitter involved in memory. “This feature could counteract short-term memory deficits induced by THC intoxication,” Russo notes.

Myrcene, another monoterpene common in cannabis, is also abundant in the flowers of humulus lupulus —hops— the only other member of the Cannabinacae family. In addition to its anti-inflammatory effect, Russo writes, “Myrcene is a recognized sedative as part of hops preparations, employed to aid sleep in Germany... Myrcene acted as a muscle relaxant in mice, and potentiated barbiturate sleep time at high doses.

“Together, these data would support the hypothesis that myrcene is a prominent sedative terpenoid in cannabis, and combined with THC, may produce the ‘couch-lock’ phenomenon of certain chemotypes that is alternatively decried or appreciated by recreational cannabis consumers.”

Linalool, which is abundant in lavender, affects serotonin neurotransmission and counters anxiety, according to a study cited by Russo. Linalool has sedative and anti-convulant properties, and is also “the likely suspect in the remarkable therapeutic capabilities of lavender essential oil to alleviate skin burns without scarring.”

Beta-caryophyllene, which is found in black pepper, Echinacea, and marigolds, “is frequently the predominant terpenoid in cannabis extracts, particularly if they have been processed under heat.” β-caryophyllene is anti-inflammatory and, unlike other anti-inflammatories, protective of the stomach lining.

In 2008 Swiss investigators led by Jurg Gertsch showed that β-caryophyllene activates the CB2 receptor —making it “the first proven phytocannabinoid beyond the cannabis genus,” Russo proclaims. “Given the lack of psychoactivity attributed to CB2 agonists, caryophyllene offers great promise as a therapeutic compound, whether systemically or in dermatological applications.”

Other terpenoids with therapeutic potential mentioned by Russo in his BJP paper are nerolidol (found in citrus, it may have sedative and anti-fungal effects); caryophyllene oxide (found in the herb lemon balm, it repels insects); and phytol (a breakdown product of chlorophyll with relaxant properties that may be the reason that green tea, despite its caffeine content, doesn’t jangle the nerves).

In their landmark 2001 paper in the Journal of Cannabinoid Therapeutics, Russo and lead author John McPartland touched on the beneficial effects of eucalypytol, pulegone, alpha-terpineol and other possibly efficacious terpenoids. These compounds were not discussed in Russo’s 2011 BJP paper.

Designer Extracts

Russo describes several mechanisms by which terpenoids and/or cannabinoids can act synergistically.

• They can work on separate targets. For example, if CBD were combined with limonene as an acne treatment, the cannabinoid could penetrate the skin and induce the cells that produce sebum to self-destruct, while the terpenoid could inhibit production of the key pathogen, Propionbacterium acnes. (Linalool and alpha-pinene also suppress P. acnes.)

• They can interact to overcome bacterial resistance. For example, CBD and CBG “powerfully inhibit MRSA,” according to one study cited by Russo, while in another study, an essential oil rich in pinene proved “as effective against MRSA and other antibiotic resistant bacterial strains as vancomycin.”

• They can have an antagonistic effect, as in the case of CBD countering THC’s ability to promote an accelerated heartbeat, the munchies, drowsiness, and anxiety.

Key role for CBD

CBD will play a key role in extracts designed for medical use. Although deemed “non-psychoactive,” CBD reduces anxiety by affecting the serotonin receptors. It also reduces cravings —for heroin, cocaine, food, nicotine and other addictive substances.

Russo describes a recent study that “demonstrated the fascinating result” that stroke patients who had suffered damage to a part of the brain called the insula “were able to quit tobacco smoking without relapse or urges.”

“In a provocative parallel,” he adds, functional MRIs of patients given CBD (600 mg p.o.) dramatically reduced activity observed within the left insula “suggesting the possibility that CBD could act as a pharmaceutical surrogate for insular damage in exerting an anti-addiction therapeutic benefit.”

Which terpenoid(s) would be complementary? Citing a study in which inhaledvapor from an essential oil of black pepper reduced craving for cigarettes, Russo writes: “the terpene profile of black pepper suggests possible candidates: myrcene via sedation, pinene via increased alertness, or especially caryophyllene via CB2 agonism.”

The Research Agenda

Cannabis designer extracts are likely to yield safe, effective new treatments for a wide range of conditions, and —in due course, it is hoped— to regulatory approval and sales. GW Pharmaceuticals has already bred cannabis chemotypes with very high fractions of myrcene and limonene, and we assume they’re working on plants high in pinene, linalool and other terpenoids with therapeutic potential. As Russo puts it in his BJP paper, “Selective cross-breeding of high-terpenoid- and high-phytocannabinoid-specific chemotypes has... become a rational target.”

Meanwhile back in California, research-minded doctors, cannabis cultivators, dispensary and lab owners, have been thinking along similar lines. (The idea that cannabis can be bred to maximize production of more than one compound is as obvious as the association between aroma and effect.) We don’t have the resources to do high throughput pharmacological screening or animal studies involving radioactive labeling, but we do have access to labs that can identify the compounds in a cannabis bud, and we have our own senses to evaluate effects.

5 people like this

Share this post


Link to post

ive been tellin people this since i started growing ..it aint just about one or two of the chemicals ..they all have something that does something .top post el.

Share this post


Link to post

great posts.

found this in the first one near the end

Conflict of Interest

The author is a Senior Medical Advisor to GW Pharmaceuticals and serves as a consultant.

who is the conflict of interest possibly with?

Share this post


Link to post

Talking Terpenes

http://hightimes.com/read/talking-terpenes

BY MARTIN A. LEE · MON APR 08, 2013

The first thing you notice upon entering a well-stocked medical marijuana dispensary is the many varieties of cannabis on display – dozens of glass jars filled with glistening, manicured bud. Everyone has their favorites: OG Kush, Headband, Sour Diesel, Flo, Lemon Thai, Super Silver Haze ... Some strains are energizing, some are sedating; some are better for pain, others for inspiration.

A couple hits of high-THC herb, by whatever name it’s called, will get you good and stoned. But it’s not the amount of delta-9-tetrahydrocannabinol that accounts for the particular properties of each strain. Nor are the minuscule quantities of cannabidiol (CBD) or the hundred or so “minor” cannabinoids a key factor in most strains. With few exceptions, the THC levels are lofty, while the other cannabinoids barely register their presence, according to labs that test samples for growers and dispensaries in states where medical marijuana is legal.

So if THC levels are generally high across the board and the other cannabinoids are present only at trace levels, what makes one strain different from another? And why does each marijuana strain impart a distinct psychoactive effect? There must be something else in the plant that influences the quality of the cannabis high.

David Watson, the master crafter of the foundational hybrid Skunk #1, was among the first to emphasize the importance of aromatic terpenes for their modifying impact on THC. Terpenes, or terpenoids, are the compounds in cannabis that give the plant its unique smell. THC and the other cannabinoids have no odor, so marijuana’s compelling fragrance depends on which terpenes predominate. It’s the combination of terpenoids and THC that endows each strain with a specific psychoactive flavor.

In 1989, Watson and his business partner, Robert Connell Clarke, formed HortaPharm, a legally chartered, Holland-based research company that specializes in botanical science and cannabis therapeutics. Based in Amsterdam, these two American expatriates broke new ground in horticultural pharmacology as they crossed and recrossed thousands of cannabis varietals, discarding most along the way while selecting a relatively small number for further development.

How did they decide which plants made the first cut? “We smelled them,” Watson explains.

He had long suspected that the terpenes present in cannabis resin enhance the potency of THC. Ten years after launching HortaPharm, Watson tested his hypothesis in an experiment that compared the subjective effects of 100 percent THC to lesser amounts in terpene-infused cannabis resin. The consensus among Watson and several associates: Terpene-infused resin with 50 percent THC was more potent by dry weight than an equivalent amount of pure THC.

Typically, terpenes are volatile molecules that evaporate easily and readily announce themselves to the nose. Therein lies the basis of aromatherapy, a popular alternative-healing modality. Like their odorless cannabinoid cousins, terpenes are oily compounds secreted in the marijuana plant’s glandular trichomes. Terpenes and THC share a biochemical precursor, geranyl pyrophosphate, which develops into the cannabinoids and terpenoids that saturate the plant’s flower tops.

But unlike THC and the other plant cannabinoids that exist nowhere else but in marijuana, terpenes are ubiquitous throughout the natural world. Produced by countless plant species, terpenes are prevalent in fruits, vegetables, herbs, spices, and other botanicals. Terpenes are also common ingredients in the human diet and have generally been recognized as safe to consume by the US Food and Drug Administration.

Scientists have identified and characterized the molecular structure of some 20,000 terpenes, which compose the largest category of plant chemicals. These can be further broken down into mono-terpenes, diterpenes and sesquiterpenes, depending on the number of repeating units of a five-carbon molecule called isoprene, the structural hallmark of all terpenoid compounds.

Around 200 terpenes have been found in cannabis, but only a few of these odiferous oily substances appear in amounts substantial enough to be noteworthy (or nose-worthy, as it were). Also, the terpenoid profile can vary considerably from strain to strain. “The range of flavors expressed by the genus Cannabis is extraordinary – no other plant on the planet can equal the cacophony of smells and tastes available from cannabis,” says DJ Short, the breeder-artisan who conjured True Blueberry from several heritage landrace strains.

The terpenes in marijuana have given the plant an enduring evolutionary advantage. Some of these essential oils are pungent enough to repel insects and animal grazers; others prevent fungus. To combat plant disease and infestation, organic pot growers spray the terpene-rich essential oils of neem and rosemary onto their crops. And terpenes, it turns out, are healthy for people as well, according to a September 2011 report by Dr. Ethan Russo in the British Journal of Pharmacology that discussed the wide-ranging therapeutic attributes of terpenoids, including several aromatic compounds that figure prominently in cannabis strains.

Alpha-pinene (essential pine oil), the most common terpene in the plant world and one often found in cannabis, is a bronchodilator potentially helpful for asthmatics. Pinene also promotes alertness and memory retention by inhibiting the metabolic breakdown of acetylcholinesterase, a neurotransmitter in the brain that stimulates these cognitive effects.

Myrcene, another terpene present in numerous cannabis varietals, is a sedative, a muscle relaxant, a hypnotic, an analgesic (painkiller) and an anti-inflammatory compound. This musky terpene contributes mightily to the infamous “couch-lock” experience, Russo maintains.

Limonene, a major terpene in citrus as well as in cannabis, has been used clinically to dissolve gallstones, improve mood and relieve heartburn and gastrointestinal reflux. Limonene has been shown to destroy breast-cancer cells in lab experiments, and its powerful antimicrobial action can kill pathogenic bacteria. (Lemon Kush, anyone?)

22_040813terpens_02.jpg

Linalool, a terpenoid prominent in lavender as well as in some cannabis strains, is an anxiolytic compound that counters anxiety and mediates stress. In addition, linalool is a strong anticonvulsant, and it also amplifies serotonin-receptor transmission, conferring an antidepressant effect. Applied topically, linalool can heal acne and skin burns without scarring.

Beta-caryophyllene is a sesquiterpene found in the essential oils of black pepper, oregano and other edible herbs, as well as in cannabis and many green, leafy vegetables. It is gastro-protective, good for treating certain ulcers, and shows great promise as a therapeutic compound for inflammatory conditions and autoimmune disorders because of its ability to bind directly to the peripheral cannabinoid receptor known as CB2.

THC also activates the CB2 receptor, which regulates immune function and the peripheral nervous system. But this is not the reason people feel stoned when they smoke marijuana; instead, what causes the high is THC binding to the CB1 receptor, which is concentrated in the brain and the central nervous system.

Stimulating the CB2 receptor doesn’t have a psychoactive effect because CB2 receptors are localized predominantly outside the brain and central nervous system. CB2 receptors are present in the gut, spleen, liver, heart, kidneys, bones, blood vessels, lymph cells, endocrine glands, and reproductive organs. Marijuana is such a versatile medicinal substance because it acts everywhere, not just in the brain.

In 2008, the Swiss scientist Jürg Gertsch documented beta-caryophyllene’s binding affinity for the CB2 receptor and described it as “a dietary cannabinoid.” It is the only terpenoid known to directly activate a cannabinoid receptor (which is one of the reasons why green, leafy vegetables are very healthy for people to eat). The dual status of beta-caryophyllene as a terpenoid and a CB2 activator underscores the synergistic interplay between various components of the cannabis plant. There are over 400 chemical compounds in marijuana, including cannabinoids, terpenoids and flavonoids (which give fruit skin its color). Each has specific medicinal attributes, which combine to create a holistic “entourage effect,” so that the therapeutic impact of the whole plant is greater than the sum of its parts.

Certain terpenoids dilate capillaries in the lungs, enabling smoked or vaporized THC to enter the bloodstream more easily. Nerolidol, a sedative terpenoid, is a skin penetrant that increases permeability and potentially facilitates cannabinoid absorption when applied topically for pain or skin conditions. Terpenoids and cannabinoids both increase blood flow, enhance cortical activity and kill respiratory pathogens – including MSRA, the antibiotic-resistant bacteria that in recent years has claimed the lives of tens of thousands of Americans. Dr. Russo’s article reports that cannabinoid-terpenoid interactions “could produce synergy with respect to treatment of pain, inflammation, depression, anxiety, addiction, epilepsy, cancer, fungal, and bacterial infections.”

Marijuana’s bouquet of terpenes – that “riot of perfumes,” as the poet (and hashish eater) Arthur Rimbaud once said – plays another important role: Terpenes buffer THC’s tricky psychoactivity. Cannabinoid terpenoid interactions can amplify the beneficial effects of cannabis while reducing THC-induced anxiety.

Some people can’t handle THC dominant marijuana, while others enjoy the relaxed intensity of the cannabis high. But few would willingly choose Marinol, the pure synthetic-THC pill, rather than organically grown backyard bud with its tangy, antioxidant-rich mixture of cannabinoids, terpenoids and flavonoids.

Marinol, legally available as a Schedule III substance, comes on like gangbusters and can make even the most seasoned stoner feel a bit too loopy. For nearly everyone who has tried both, the experience of THC alone compares poorly to that of THC combined with terpenes and other components of the cannabis plant.

In the summer of 2011, the Werc Shop in Los Angeles emerged as the first lab to test cannabis strains for terpenes. Since it began providing this service to the medical marijuana community, the Werc Shop has analyzed more than 2,000 bud samples for terpene content. Its analysis has occasionally revealed strains with different names but identical terpene content.

“A terpene analysis is like a fingerprint,” explains the Werc Shop’s president, Jeff Raber. “It can tell you if it’s the same strain under different names. We can see strains going by different names that have the same terpene profile. We now know those strains are identical.”

22_040813terpens_03.jpg

Terpene testing has enabled the Werc Shop to identify when strains have been misnamed. “We’ve seen a dozen of samples of Trainwreck, for example, that have a consistent terpene profile,” Raber says. “And then we examine some bud purporting to be Trainwreck, but with a terpene content that differs markedly from what we know is Trainwreck. By testing for terpenes, we can often verify if the strain is what the grower or provider says it is.”

It may be possible, via terpenoid and cannabinoid analysis, to investigate and verify the genetic lineage of various strains. Though a great deal of research would be required, one might even be able to construct something akin to a marijuana family tree.

The Werc Shop has also tested numerous cannabis extracts for their terpene content. But Raber found that the oil-extraction process, if it involves heating the plant matter, typically destroys the terpenes, which evaporate at much lower temperatures than THC.

Various extraction methods have their pros and cons. Using hexane or another toxic solvent to extract cannabis oil can leave poisonous residues behind. Critical CO2 extraction, while cleaner, requires expensive, sophisticated equipment and technical expertise. In either case, the extract maker may have to add the terpenes back into the oil concentrate in order to maximize the plant’s therapeutic potential.

In the future, when the herb is legal nationwide, it should be possible to access strain-specific cannabis oils, as well as made-to-order marijuana extracts with a full array of terpenes artfully tailored to meet the needs and desires of individual users.

Martin A. Lee is the author of Smoke Signals: A Social History of Marijuana – Medical, Recreational and Scientific, winner of the American Botanical Council’s James A. Duke Award for Excellence in Botanical Literature. Lee is the director of Project CBD, a cannabis science information service, and the author of Acid Dreams. For more information and regular updates, follow Smoke Signals– the book – on Facebook.

Edited by namkha

Share this post


Link to post

quite technical a read, but absolutely fascinating. Thanks to the insights, and to the

link with BJP (british pharm. journal, not the indian rightwingers nuts!! :furious: )

:smoke::guitar::smokin:

Share this post


Link to post

this is quality stuff great read

Share this post


Link to post

i heard an interview with the guys from steephill labs in california, they were talking about adding terpines from mango's and other fruits to different strains of cannabis to alter the high, its all a bit over my head but interesting none the less :smokin:

Share this post


Link to post

this seems more like informed imaginative speculation rather than the result of any actual research, but still interesting:

The Surprising Everyday Ingredient That Can Reduce Pot Paranoia
Smelling peppercorns?

pepper.jpg

Photo Credit: Trophygeek/ Flickr.com

August 18, 2014 |

According to a recent report by Marijuana.com, sniffing black peppercorns could be the simple answer to reducing the paranoia effects sometimes felt after smoking pot. By simply smelling or chewing on peppercorns after lighting up, smokers can mitigate these effects, writes Jay Arthur.

Owen Smith writes in Canada's Cannabis Digest that while at Victoria Cannabis Buyers Club, he witnessed the impact pepper had on pot. "Most patients who have tried this simply took a few sniffs of the black pepper to receive an almost immediate effect," he wrote. "Others have reported that after chewing on pepper corns they felt relief within an hour, but that may be a delay most would seek to avoid."

Why would this work? In a scientific review published by the British Journal of Pharmacology, author Ethan Russo writes of a “phytocannabinoid-terpenoid entourage effect” that can help with “pain, inflammation, depression, anxiety, addiction, epilepsy, cancer, fungal and bacterial infections.”

Although the review doesn't contain any studies to pot and eating pepper, it aims to point out the connections between THC (tetrahydrocannabinol) and terpenoids found in plants such as pepper. For several years marijuana research has focused on THC for studying marijuana’s effects. Russo proposes we also turn our attention to the plant components found in terpenes. The combination of the two (in the right dosages) has great appeal for scientists studying medicines with cannabinoids.

Pepper contains the terpenes myrcene, α-Pinene (alpha-pinene) and the terpenoid (a modified terpene) caryophyllene. Pinene has been used for asthmatic patients as a bronchodilator, and, beta-caryophyllene which has been researched for help with athritis, multiple sclerosis and HIV-associated dementia as well as treatment with anxiety and depression. In other words, the terpenoids found in pepper could help with the THC-induced symptoms felt from the phytocannabinoids found in marijuana.

Russo proposes that certain strains of medicine could benefit if given the right mix of of phytocannabinoids and terpenoids. He calls this a “synergy,” and references a number of historical anecdotes to prove his point, including one from Pliny The Elder’s Natural History Book, XXIV.

Pliny writes: “The gelotophyllis [‘leaves of laughter’ or cannabis] grows in Bactria and along the Borysthenes. If this be taken in myrrh and wine all kinds of phantoms beset the mind, causing laughter which persists until the kernels of pine- nuts are taken with pepper and honey in palm wine.”

The ancients from the Classical Era demonstrate once again that they have plenty to teach us.

Clarissa A. Leon is AlterNet's food editor. She formerly served as an investigative research assistant at The Daily Beast and The Nation Institute.

http://www.alternet.org/food/black-pepper-marijuana

1 person likes this

Share this post


Link to post

when I was younger there was a rumour that you could get stoned or enhance your stonedness by ingesting a mixture of nutmeg and another herb oregano maybe. now I think that idea might not be as far fetched as I used to think

Share this post


Link to post
Sign in to follow this  
Followers 0